End Behavior of Polynomial Functions

Vocabulary

Polynomial Function	
Degree of a Polynomial	
Leading Coefficient	
End Behavior of a Polynomial	

Examples: Fill in the table.

	Polynomial	Standard Form	Degree	Leading Coefficient	Number of Terms
1	$-4x + 9 + 2x^2$				
2	$2x - 3x^4 + 6 - 5x^3$				
3	$x^5 + 2x^6 - 3x^4 - 8x + 4x^3$				

End Behavior: Investigate the following graphs.

Graph	Equation	Leading Coefficient	Right End Behavior	
-10 -5 6 5 10 5	$y = 2x^2 - 1$		$As \ x \to \infty, y \to \underline{\hspace{1cm}}$	
.10 .5 0 5 10	$y = 3x^3 + 2x^2 + 1$		$As \ x \to \infty, y \to \underline{\hspace{1cm}}$	

Graph	Equation	Leading Coefficient	Right End Behavior
-10 -5 Q 5 10	y = -2x - 1		$As x \to \infty, y \to \underline{\hspace{1cm}}$

Right	End	Beha	vior
Bc	LIIG	DCIIG	

Right End Behavior is determined by the ______.

If the ______ is positive, right end behavior is: $As \ x \to \infty, y \to$ _____

If the _____ is negative, right end behavior is: $As \ x \to \infty, y \to$ _____

Graph		Equation	Degree	Compare End Behaviors
-10 -5 0	5 .10	$y = 2x^2 + 2x - 3$		
-10 -5 0 -55	5 10	$y = -3x^4 + x + 3$		

10		
5		
<u> </u>	$y = -x^3 + 2x + 1$	
-10 -5 0 5 10	y = x + 2x + 1	
-5		
-10		
10		
	_	
5		
	$y = 4x^5 - 1$	
-10 -5 0 5	$\frac{10}{10}$	
	10.	
-5	_	
-10		

1. Determine right end behavior first, by looking at the ______.

2. Determine if left end behavior is the same or opposite by looking at the _______.